Periodic quadratic spline interpolant of minimal norm
نویسندگان
چکیده
منابع مشابه
A quadrature formula associated with a univariate quadratic spline quasi-interpolant
We study a new simple quadrature rule based on integrating a C1 quadratic spline quasi-interpolant on a bounded interval. We give nodes and weights for uniform and non-uniform partitions. We also give error estimates for smooth functions and we compare this formula with Simpson’s rule.
متن کاملBest Quadratic Spline Approximation
We present a method for hierarchical data approximation using quadratic simplicial elements for domain decomposition and field approximation. Higher-order simplicial elements can approximate data better than linear elements. Thus, fewer quadratic elements are required to achieve similar approximation quality. We use quadratic basis functions and compute best quadratic simplicial spline approxim...
متن کاملPseudo-spectral Derivative of Quadratic Quasi-interpolant Splines
Abstract. In this paper we propose a local spline method for the approximation of the derivative of a function f . It is based on an optimal spline quasi-interpolant operator Q2, introduced in [12]. Differentiating Q2 f , we construct the pseudo-spectral derivative at the quasi-interpolation knots and the corresponding differentiation matrix. An error analysis is proposed. Some numerical result...
متن کاملCollision-free Piecewise Quadratic Spline with Regular Quadratic Obstacles Collision-free Piecewise Quadratic Spline with Regular Quadratic Obstacles
We classify mutual position of a quadratic Bézier curve and a regular quadric in three dimensional Euclidean space. For given first and last control point, we find the set of all quadratic Bézier curves having no common point with a regular quadric. This system of such quadratic Bézier curves is represented by the set of their admissible middle control points. The spatial problem is reduced to ...
متن کاملInterpolant Synthesis for Quadratic Polynomial Inequalities and Combination with EUF
An algorithm for generating interpolants for formulas which are conjunctions of quadratic polynomial inequalities (both strict and nonstrict) is proposed. The algorithm is based on a key observation that quadratic polynomial inequalities can be linearized if they are concave. A generalization of Motzkin’s transposition theorem is proved, which is used to generate an interpolant between two mutu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1978
ISSN: 0021-9045
DOI: 10.1016/0021-9045(78)90098-9